PR RRaR T Lo LG DR SN AT TR TN e e T TN T N S

or WSH VBScrpt WML FsO - 300165

s ADSICDOHTA CGILPerl - Systems Administration Programming &5

" =gt objWMI = GEEDIDJECL("Hlmg’mtS:\"I...".I.'GI:IE".I:lI['ﬁ.FZ"] %" -:
| =et fz30 = Createdbijecto("3cripting.FileSystemCbhiject'™) ;

-- WM AT o T, i Db ST P TR T T LT T WD e e e M e

Lecture 11
Server Side programming Using Perl p.uip20e ©

In the previous lecture, we have learnt the basic concept of CGl and server side programming.
In this lecture we'll reinforce CGI programming skills via a set of examples, where file
operations are to be illustrated. Note that all these examples are very fragile. | did not include
too much error catching in the code in order to make the code more readable. Any change on
the code could cause problem to run.

All the code is tested in my working environment. To make the code working for you, the URL
of your CGI program should be in the following format:

http://student.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~XXXXXXX/YYYYYYY.cqi

where XXXXXXX is your school user id and YYYYYY is your CGI program name. To run your
CGil, you must be connect to the school using VPN or work at school lab.

Key words

CGI (Common Gateway Interface), Client-side/Server-side Web Programming, Perl, PHP

Reference to textbook chapters

For basic knowledge on Perl, here is an online book: Simon Cozens, Beginning Perl. There are
also plenty of online Perl tutorials over the Web.

File operations: read files

The following script readTextFile.cgi can read a text file (1yrics. txt) from the server and
publish the content of the file to the client's browser.

#!/usr/bin/perl -w

use CGI gw (:standard);

print "Content-type: text/html\n\n";
S$file="1lyrics.txt";

open (FILE, "<$file") or die("The file could not be opened!");
while ($1ine=<FILE>) {
print ("$line
");
}
close (FILE) ;

The program simply reads the file 1yrics. txt line-by-line and outputs to the client's browser.
$file is a variable, which is used to store the name of the input file. Similar to VBScript, we do
not need to declare a variable before we use it. We also do not need to worry about the type of
an variable. The statement open (FILE, "<S$file") is used to open the file. The label FILE
is called filehandle, which is used for file processing. We can view it as a reference of Sfile.
Note that the symbol "<" in the statement indicates that the file is opened for reading. You do
not need to set the text file to be 'everybody can read'. It just needs to be accessible by your
script. If the file is placed in a different directory other than cgi-bin, you need to specify its
relative path, say "../../documents/lyrics.txt".

file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/schedule.html
http://www.perl.org/books/beginning-perl/
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/readTextFile.cgi
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/Lecture%2011%20Server%20Side%20programming%20Using%20Perl.pdf

To call this script, you can simply type in this URL:
http://staff.scem.westernsydney.edu.au/cgi-
bin/cgiwrap/~jianhua/readTextFile.cgi

in your Web browser. You can also write a HTML file to call the script (readTextFile.html):

<HTML>

<HEAD>

<TITLE>Read File</TITLE>

</HEAD>

<BODY>

<FORM ACTION="http://staff.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~jianhua/readTextFile.cgi"
METHOD="POST">

<INPUT TYPE="submit" VALUE="Get file">
</FORM>

</BODY>

</HTML>

Remember to change the URL to fix your working environment when testing your own CGl
code.

File operations: write files

The code for write a message into a text file is similar. Note that the resulting file is stored in the
server side.

First, let's look at the client-side program writeTextFile.html:

<HTML>

<HEAD>

<TITLE>Write a message</TITLE>

</HEAD>

<BODY>

<FORM ACTION="http://staff.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~jianhua/writeTextFile.cgi"
METHOD="POST">

Write your message here

<TEXTAREA NAME="message" ROWS=4 COLS=45></TEXTAREA>
<P><INPUT TYPE="submit" VALUE="Send">

</FORM>

</BODY>

</HTML>

Run the client-side program before you install the server-side CGIl program to get a feeling of
the HTML form. In fact, it takes client's message from a textarea and send it to the server via a
CGl query. The server catches this query and write the message into a file (lodfile.txt). The
server side program write TextFile.cqi is the following:

#!/usr/bin/perl
use CGI gw(:standard);
print "Content-type: text/html\n\n";

Scontent = param("message");
S$file="logfile.txt";

open (FILE, ">$file"™) || die("Fail to open the file");
print FILE "S$content";

close (FILE);

print "Thanks for your message.";

The program is almost the same as "readTextFile.cgi" except:

1. the statement that catches the message from the client side program and save it to the variable
Scontent:
Scontent = param("message");
2. and the statement that open the file logfile.txt for write:
open (FILE, ">$file")

Note that ">" means overwriting the file. To append data to the file, use ">>".

Upload files to the server programmatically

http://staff.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~jianhua/readTextFile.cgi
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/readTextFile.html
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/writeTextFile.html
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/writeTextFile.cgi

First, create a special folder at your server (not necessarily readable and writable to every body
but should be true to your script) where you are going to upload files. For instance, you can
make a folder named "upload" under your home directory in Unix drive by the following
commands:

cd ~
mkdir upload

Next you create a client side program to collect client's files (uploading.html):

<html><head><title>Uploading Files</title>

</head><body>

<form action="http://staff.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~jianhua/uploading.cgi"
method="post" enctype="multipart/form-data">

What file would you like to upload?

<input type="file" name="uploadfile" size="30">

<input type="submit">

</form>

</body>

</html>

Download the file and save it locally. Change the URL to point to the CGI code on your server.

Now the job left is to write a server side program to accept the files to upload. See
uploading.cqi:

#!/usr/bin/perl -w
use CGI gw/:standard/;
print "Content-type: text/html\n\n";

my $file = param('uploadfile');
my S$upload dir = ">../../upload";
my $fileName = S$file;

$fileName =~ s/.*[\/\\] (.*)/$1/;

if ($file) {

open (UPLOAD, ">Supload dir/SfileName") || Error ();
my (Sdata, S$length, Schunk);

while (Schunk = read ($file, $data, 1024)) {

print UPLOAD $data;

}

close (UPLOAD) ;

print "<p>Thank you for uploading $fileName.";
} else {

print "No file was chosen.";

}

sub Error {
print "Couldn't open temporary file: $!";
exit;

}

In the above code, the first three line are standard. The highlighted block in blue defines the file
names of the file to upload and the file to save. The variable $file holds the file name to
upload (now on your local machine). Supload dir specifies the folder "upload" your just
created. $fileName gives the name of the file to be saved on the server. Note that the saved
file name is the same as its original name except the possible path of the original file has been
removed (use regular expression). The highlighted part in red reads the file to upload, block-by-
block, and save it to the file on the server. The read function reads 1024 bytes data from $file to
$data variable each time. The print statement saves the data from $data to UPLOAD, a
reference of the saved file.

Password checking

The final example | am going to show you is the code for checking user id and password. The
client side code password.html is the following:

<html><head><title>Verifying a username and a password</title>

file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/uploading.html
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/uploading.cgi
file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/password.html

</head><body>
<h2>Type in your username and password below. </h2>
<form action="http://staff.scem.westernsydney.edu.au/cgi-bin/cgiwrap/~jianhua/password.cgi"
method="post">
<table><tbody><tr>
<td>Username:</td>
<td> <input name="username" type="text"> </td>
</tr><tr>
<td>Password:</td>
<td> <input name="password" type="password"> </td>
</tr><tr>
<td> <input type="submit" value="Enter"> </td>
</tr>
</tbody></table>
</form>
</body></html>

As usual the URL points to the CGI program password.cgi. Two inputs widgets accept user
name (as text) and password (as password), respectively. Note that the Web browser can
automatically blind user's input of password.

The server side program (password.cqi) is a bit more complicated.

#!/usr/bin/perl -w
use CGI gw(:standard);
print "Content-type: text/html\n\n";

StestUsername = param("username");
StestPassword = param("password");

open (FILE, "password.txt") || die("The database could not be opened.");
while ($line = <FILE>) {
chomp ($line);
(Susername, S$password) = split(",", $line);
if ($testUsername eq Susername) {
SuserVerified = 1;
if ($testPassword eq S$password) {
SpasswordVerified = 1;
last;
}
t
}
close(FILE);

if (SuserVerified && S$passwordVerified) {
accessGranted() ;
}elsif (SuserVerified && !SpasswordvVerified) {
wrongPassword () ;
lelse {
accessDenied() ;

}

sub accessGranted{
print "Permission has been granted";

}

sub wrongPassword{
print "You entered an invalid password. Access has been denied.";

}

sub accessDenied{
print "You have been denied access to this site.";

}

The core of the program is the highlighted part in red. It reads the password. txt file line-by-
line. Each line of the file is in the format: username, password. The chomp function removes
any terminating newline characters from its parameter. The split function splits each line into
two parts and store the result into the array Susername, S$password. The two if statements
check user name and password, respectively (match the information provided by a user to
records stored in a file). The rest of the code is trivial.

Tips for debugging a Perl program

file:///E:/Teaching/300165%20Systems%20Admin%20Programming%20-%20Jamie/vUWS20xx/lectures/Lecture_11_files/password.cgi

1. Always start from the simplest code and make sure it works well. Add more functionalities
one by one. Once you implement a new functionality, save it to a backup folder before you
add more functionalities to it.

2. A server side program is supposed to be small. Too complicated programs would slow down
the server.

3. A CGlI program needs to be everybody executable. However, you should keep other file to
be safe, especially the password database.

4. Perl and Unix commands are case sensitive.

